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Shear flows at sufficiently high Mach numbers support instability waves which travel
supersonically relative to the ambient free stream. Such supersonic modes are known
to produce intense far-field sound in the form of Mach wave radiation. In this
paper, the nonlinear evolution of supersonic modes and the associated Mach wave
radiation are analysed in a self-consistent fashion by using the high-Reynolds-number
matched asymptotic expansion in conjunction with the multiple-scale method. Atten-
tion is focused on the relatively weak disturbances for which the nonlinear effect
is comparable with the non-parallel-flow effect. The nonlinear spatial development
of the mode is described by an amplitude equation in which the nonlinear term is
contributed by the critical layer. The directivity of the radiated Mach waves in the
far field is determined explicitly in terms of the amplitude function. The analysis is
applicable to plane mixing layers, boundary layers, and planar and circular jets. In
particular, it is shown that for the last two flows, the radiated Mach waves are most
intensive in a beam which is perpendicular to the Mach wave front and emanates
from the streamwise position at which the instability mode attains its maximum
amplitude. The theoretical results are compared with direct numerical simulation and
experimental data, and favourable qualitative and quantitative agreement is obtained.

1. Introduction
Noise generated by unsteady hydrodynamic motion, such as jets, mixing layers

or boundary layer flows, has long been a serious concern for numerous technology
applications, in particular for the aviation industry. The principal theoretical approach
to this fundamental problem in fluid mechanics has been the acoustic analogy of
Lighthill (1952, 1954) and its various variants (e.g. Phillips 1960; Lilley 1974; Howe
1975). That approach is based on re-arranging the Navier–Stokes equations governing
compressible flows to a form such that the left-hand-side operator apparently describes
the ‘propagation’ of a sound wave, while the right-hand side may be interpreted as the
effective ‘source’ acting on a fictitious acoustic medium. In the original formulation of
Lighthill, the wave operator was taken to be the simplest possible, that for a uniform
medium at rest, while the right-hand-side ‘source’ term was expressed in terms of a
stress tensor, Tij . A formal ‘solution’ to the wave equation can be written down for
the density fluctuation ρ, in terms of a volume integral over the source region. This
in essence amounts to an integral equation because the source term also contains the
unknown density. Nevertheless this formal solution has been explored to gain useful
information about the sound produced in the case where something about the nature
of the source is known a priori.



122 X. Wu

In the low-Mach-number limit (M � 1), the characteristic acoustic wavelength is
much larger than the domain of the hydrodynamics motion which contributes to the
sound. In this case, Lighthill (1952) suggested that the density variation (i.e. com-
pressibility) within the source region may be neglected, that is, the source term may
be approximated by the fluctuating velocities corresponding to an incompressible flow
field. Crow (1970) on the other hand approached the problem of sound radiation of
low-Mach-number flows using systematic matched asymptotic expansions, and found
that prediction of radiated sound requires some prior knowledge about the far-field
asymptotic behaviour of the source. The convergence of Lighthill’s quadrupole-form
solution, obtained by exchanging the order of integration and differentiation, relies
on a certain (far-field) property of Tij . When the inevitable step of approximating
Tij , by T

(0)
ij say, is taken, the required property may not always be guaranteed.

Moreover, the sound produced by the neglected part (Tij − T
(0)
ij ) depends not only on

size but also on its asymptotic behaviour of the latter, and may not necessarily be
negligible. Therefore despite its apparent simplicity, it is not self-evident that Lighthill’s
approximation is equivalent to the leading-order asymptotic solution to the radiated
sound. Such an equivalence has been established only in some special cases, e.g. sound
radiation by a purely inviscid vorticity field in an infinite domain (see e.g. Kambe
1986).

In fully compressible shear flows, the acoustic wavelength is typically comparable
with the shear-layer thickness, and consequently identification or approximation of
the relevant sources becomes more problematic. Especially for supersonic flows, sound
radiation exhibits features distinct from those of low-speed flows; see the review of
Tam (1995) and recent experiments of Panda & Seasholtz (2002). One of them is
that fluctuations which propagate supersonically relative to the ambient free stream
radiate noise as highly directional Mach waves. This mechanism was first investigated
by Phillips (1960). Instead of Lighthill’s analogy, Phillips derived a convected acoustic
wave equation which includes the effects of convection and refraction caused by
the variation of the local mean speed of sound. The main source was attributed to
velocity fluctuation, or more precisely to the product of the gradients of the fluctuating
and mean velocities. Phillips (1960) obtained the large-M asymptotic solution, which
indicates that the radiated sound of a given frequency and wavenumber may be asso-
ciated with the source properties at the critical level. Using this solution in conjunction
with a plausible assumption on the spectrum of velocity fluctuations, Phillips estimated
that the radiated sound intensity scales as M3/2, as oppose to the well-known M8-law
for low-Mach-number flows.

Ffowcs Williams & Maidanik (1965) took a somewhat different line of attack from
that of Phillips (1960). They started from Lighthill’s (1952) formal (exact) solution,
and using the momentum equations manipulated the source term to a form consisting
of, inter alia, the product of the density fluctuation ρ and the mean velocity gradient.
They argued that this term would be the dominant source in the case of the mean
velocity gradient exceeding the fluctuating velocity gradient. The density in the source
was then related to the pressure fluctuation p using a ‘local isentropic condition’. After
several further steps of a conjectural nature and employing the empirical formula for
the r.m.s. of (∂p/∂t)2, they obtained a formula which correlates the radiated sound
with the surface pressure. The prediction was found to be in good agreement with
the measurements.

As was indicated above, the Navier–Stokes equations can be re-arranged in different
ways to facilitate acoustic analogies, each having a different ‘source term’. All of the
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formulations would be equivalent, had the effective ‘source’ terms been evaluated
exactly. However, some approximations have to be made to the source beforehand†
in order to deduce any meaningful information about the radiated sound, and then
the precise relation between, and the relative merits of, the different analogies become
far from evident. Physically speaking, emission of sound waves occurs as a result
of hydrodynamic fluctuations changing their character to become acoustic as they
approach the far field. Since the acoustic analogy does not consider this physical
process in detail, the choice of what constitutes the noise source and what constitutes
the propagation effect was rather a subjective one, based on some intuitive reasoning
rather than a systematic analysis. This is the case with the two aforementioned
theoretical treatments of Mach wave radiation. In the work of Ffowcs Williams &
Maidanik (1965), the refraction of the density fluctuation by the mean-flow gradient
is taken to be the dominant source, while in Phillips (1960) it is taken to be a propaga-
tion effect. Experimental investigations of compressible jets (e.g. Panda & Seasholtz
2002) show that the acoustic spectrum and intensity in the far field are strongly
correlated to those of the density fluctuation within the jet, suggesting that the latter
is an important source.

Rather than investigating Mach wave radiation by general turbulent fluctuations,
for which little quantitative information is available, Tam & Burton (1984a, b) focus
on the Mach wave generated by the so-called supersonic instability modes, whose
phase velocity exceeds the sound speed in the ambient stream. The instability wave is
assumed to be of sufficiently small amplitude that it evolves linearly, i.e. it amplifies
exponentially, attenuates and finally decays due to the gradual spreading of the shear
flow. The entire process can be described by local quasi-parallel linear instability
theory. The asymptotic expansion for hydrodynamic motion, however, breaks down
in the far field (cf. Tam & Morris 1980), and thus an outer region needs to be
introduced to accommodate the radiated Mach wave. The intensity of the latter is
determined by matching with the inner expansion. The absolute intensity can be
determined once the amplitude of the instability wave is prescribed, which was done
by fitting with experimental data.

The idea that instability waves, or in a broader sense large-scale orderly structures,
constitute a dominant source of noise goes back to Tam (1971), Bishop, Ffowcs
Williams & Smith (1971) and Crow & Champagne (1971), among others. In the case
of supersonic jets, the role of supersonic modes in radiating Mach waves was con-
firmed by a series of experiments in circular (McLaughlin, Morrison & Troutt 1975;
Troutt & McLaughlin 1982) as well as elliptic (Kinzie & McLaughlin 1995) jets.
Tam & Burton (1984a, b) applied their theory to the experimental conditions of
Troutt & McLaughlin (1982), and showed that the predicted acoustic directivity
agreed with the measurements quite well. In these experiments the Reynolds numbers
were fairly low and the instability waves were introduced in a controlled manner.
Flows of technological interest usually have much higher Reynolds numbers so that
the flow field tends to be intrinsically more disorganized, and moreover naturally
occurring instability waves would have a broadband spectrum.

† For instance, one of the latest approaches is to model the (complete) source term appearing
in an acoustic analogy by assuming a parameterized spectral function with the parameters being
determined by a steady flow computation using averaged equations of motion (e.g. Khavaran,
Bridges & Freund 2002).
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Mitchell, Lele & Moin (1997) were the first to compute the Mach waves radiated
by small-amplitude (i.e. linear) axisymmetric supersonic modes by direct numerical
simulations (DNS) in a domain sufficiently large to encompass the far field. The
directivity and intensity of the sound predicted by DNS were found to be in good
agreement with the theoretical results of Tam & Burton (1984a, b). In addition,
Mitchell et al. (1997) demonstrated that Lighthill’s acoustic analogy may be used
to construct the sound field provided that the density fluctuation is retained in
the stress tensor and the non-compactness of the source is taken into account;
this is expected since the exact source (apart from linearization, which is justified
because of small amplitude) was used in Lighthill’s formulation which is exact.
Avital, Sandham & Luo (1998) examined the Mach wave field of a temporally
evolving mixing layer, using a variation of Tam & Burton’s formulation as well as
Phillips’ (1960) acoustic analogy. Freund, Lele & Moin (2000) simulated a Mach
1.92 turbulent jet initiated by a turbulent inflow, and showed that the acoustic field
exhibits a highly directional pattern that is characteristic of Mach waves. Mohseni,
Colonius & Freund (2002) carried out simulations based on linearized Navier–Stokes
equations for the same inflow condition as in Freund et al. (2000), and compared
the outcome with the DNS result. They demonstrate that the Mach wave field is
dominated by axisymmetric and first helical modes. In particular, the directivity of
the Mach wave field appears to be accounted for well by the first helical modes, but
its intensity was appreciably underestimated by the linearized approximation. This
result implies that nonlinear effects may be important in Mach wave radiation. An
obvious nonlinear effect is that associated with the growth and decay of supersonic
instability modes. All these simulations were conducted at quite low Reynolds
numbers.

During the last two decades or so, considerable advances were made in developing
nonlinear instability theory of nearly parallel shear flows. It is now well-understood
that as an initially linear instability mode evolves downstream, the nonlinear effect
first becomes important in the critical layer. The subsequent nonlinear evolution can
be described in a self-consistent fashion in the framework of the nonlinear critical-
layer approach. The reader is referred to Goldstein (1994, 1995) and Cowley & Wu
(1994) for reviews of this field. In compressible shear flows the nonlinear development
of a single oblique mode has been investigated by Goldstein & Leib (1988) and Leib
(1991). The latter paper is particularly relevant for the present work as it considers
supersonic modes. Leib & Lee (1995) studied pairs of oblique waves, and found that
their evolution was governed by the same amplitude equation as in the incompressible
case (Goldstein & Choi 1989; Wu, Lee & Cowley 1993).

The aim of the present paper is to investigate the Mach wave radiation by supersonic
instability waves or more generally wavetrains that undergo nonlinear development.
In § 2, the problem is formulated first for a plane mixing layer. Attention will be
focused on the regime in which nonlinear and non-parallel effects are of importance
simultaneously. The nonlinear evolution of a planar supersonic mode is considered
in § 3. By analysing the nonlinear interaction within the critical layer, an amplitude
equation of Landau–Stuart type is derived. The Mach wave field radiated by this
nonlinearly evolving mode is studied in § 4. It is shown the intensity and directivity
can be expressed explicitly in terms of the amplitude. In § 5, the analysis is modified to
predict the Mach wave radiated by axisymmetric and helical modes in a circular jet.
Results of parametric studies are presented in § 6, where the theoretical predictions in
the linear limit are compared with the relevant DNS and experimental data. A brief
summary is given in § 7.
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2. Formulation
To fix ideas, we consider a plane mixing layer, which forms between two oncom-

ing streams of velocity U ∗
1 and U ∗

2 (U ∗
1 >U ∗

2 ). The coordinates (x, y) are non-dimen-
sionalized by δ∗, the thickness of the shear layer at a streamwise location of interest.
The time t , the velocity (u, v) and the pressure p are non-dimensionalized by δ∗/U ∗,
U ∗ and R∗U ∗2 respectively, where U ∗ = (U ∗

1 − U ∗
2 )/2. The temperature, density, and

viscosity (thermal diffusivity), non-dimensionalized by their respective values in the
faster stream T ∗, R∗ and µ∗ (κ∗), are denoted by θ , ρ and µ (κ). Both µ and κ depend
on temperature, i.e. µ = µ(θ) and κ = κ(θ).

The velocity profile of the shear flow is given by

(Ū (y, x3), R
−1V̄ (y, x3)) with x3 = x/R,

where the Reynolds number R is defined as

R = R∗U ∗δ∗/µ∗,

and will be assumed to be large in the present paper. The temperature and density
profiles are denoted by T̄ and R̄ respectively, with R̄ = 1/T̄ . We define the Mach
number

M = U ∗/a∗

with a∗ being the sound speed in the fast stream.
A linear instability analysis (e.g. Jackson & Grosch 1989) shows that at sufficiently

high Mach numbers, a mixing layer supports two supersonic modes which propagate
downstream supersonically relative to the fast and slow streams respectively. A super-
sonic instability mode amplifies until it reaches the neutral position x3 = x3,n, after
which the mode decays. The neutral position is of special interest for three reasons.
First, when approaching x3,n, the instability wave is no longer confined within the
shear layer, but becomes radiative instead, i.e. its amplitude is oscillatory and remains
finite rather than decaying to zero in the free stream. In other words, the supersonic
instability mode is locally in resonance with a Mach wave. Second, with the instability
mode attaining its maximum magnitude on a linear basis and the emergence of a
critical layer, the nonlinear effect, though negligible sufficiently upstream, is likely to
become significant in the vicinity of x3,n according to nonlinear critical layer theory
(Goldstein 1994, 1995; Cowley & Wu 1995). Third, as the linear growth rate dimin-
ishes, the no-parallel-flow effect becomes important in the region where (x3 − x3,n) ∼
O(R−1/2), i.e.

x3 = x3,n + R−1/2x̄ with x̄ = O(1). (2.1)

In this vicinity, the length scale over which the growth rate varies is comparable with
the reciprocal of the growth rate (i.e. the length scale over which the amplitude evolves).
The local mean velocity and temperature profiles can be approximated, to the required
order, by

(Ū (y, x3), T̄ (y, x3)) ≈ (Ū (y, x3,n), T̄ (y, x3,n)) + R−1/2(Ū 1(y), T̄ 1(y))x̄.

In the following, unless otherwise stated Ū and T̄ are to be understood to stand for
Ū (y, x3,n) and T̄ (y, x3,n) respectively.

The primary interest of the present paper is to predict Mach wave radiation as a
supersonic mode evolves nonlinearly. The dominant nonlinear effect comes from the
critical layer, and may come into play in different fashions depending on the form
of disturbance and its initial amplitude. In the present study, we consider the relatively
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weak disturbance, for which nonlinearity becomes significant in the region as specified
by (2.1), producing an effect comparable with the non-parallelism. The O(R−1/2) non-
equilibrium effect associated with the slow modulation is then much smaller than the
viscous effect, and hence the critical layer is viscosity dominated and has a width
of O(R−1/3δ∗). For simplicity, we start with a two-dimensional wave, for which it is
found that the threshold magnitude

ε = O
(
R−11/12

)
. (2.2)

A disturbance with ε � R−11/12 would evolve through x3,n without being affected by
nonlinearity. On the other hand, if ε � R−11/12, the location where the nonlinear effect
becomes important shifts upstream. A new distinct regime arises when ε = O(R−5/6),
for which the critical layer becomes non-equilibrium as well as viscous. The nonlinear
development in this regime of a single supersonic instability mode was studied by Leib
(1991). The disturbance evolves over a length scale of O(R2/5δ∗), which is much shorter
than the O(R1/2δ∗) scale so that the non-parallel flow effect is negligible to leading
order. The amplitude equation derived by Leib (1991) describes the nonlinear evolu-
tion in a region located at an O(R3/5δ∗) distance upstream. It does not, however,
describe how the disturbance evolves through the neutral position. Before one could
predict the Mach wave radiation of such a relatively strong instability mode, it is
necessary first to construct a composite solution which is uniformly valid over the
O(R1/2δ∗) length scale and capable of describing the growth and decay of the distur-
bance. Such a task is left for further investigation; the present study is concerned with
the disturbance with the characteristic amplitude (2.2), which the evolves nonlinearly
in the region specified by (2.1).

In practice, the disturbances usually have a broadband spectrum. Even in controlled
experiments where an instability mode of a specific frequency is excited, the resulting
disturbance would consist of a narrow band of spectral components centred at the
frequency of excitation (see e.g. figure 16 of Troutt & McLaughlin 1982). A disturbance
of this type corresponds to a wavetrain which modulates simultaneously in time and
space. In the present analysis, the wavetrain is allowed to modulate on the O(R−1/2)
time scale so that it can be conveniently described by assuming that its amplitude
depends on the slow time variable

t̄ = R−1/2t,

as well as on the spatial variable x̄.

3. Nonlinear evolution of supersonic instability modes
The development of the instability mode of interest is described by a double-layered

structure consisting of the main layer, where the unsteady flow is linear and inviscid
to the required order, and the critical layer, where both nonlinear and viscous effects
are important.

3.1. Main layer

In the main layer, where y =O(1), the disturbance expands as

(u, v, p, θ, ρ) = ε
[
A(x̄, t̄)(û0, v̂0, p̂0, θ̂0, ρ̂0) + R−1/2(û1, v̂1, p̂1, θ̂1, ρ̂1)

]
E + c.c.+ · · ·

(3.1)

where E = eiα(x−ct) describes the carrier wave with α and c being the wavenumber
and phase speed respectively. A(x̄, t̄) is the amplitude function of the wavetrain. Such
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a wavetrain consists of spectral components of O(R−1/2) bandwidth centred at the
frequency of the carrier wave.

Substitution of (3.1) into the compressible Navier–Stokes equations yields the
continuity, energy and momentum equations for the disturbance

iα(Ū − c)ρ̂0 + R̄′v̂0 + R̄(iαû0 + v̂′
0) = 0,

iα(Ū − c)θ̂0 + T̄ ′v̂0 = iα(γ − 1)M2(Ū − c)T̄ p̂0,

iα(Ū − c)û0 + Ū ′v̂0 = −iαT̄ p̂0,

iα(Ū − c)v̂0 = −T̄ p̂′
0,

 (3.2)

where γ stands for the ratio of specific heats, and a prime denotes a derivative with
respect to y. The system (3.2) is supplemented by the state equation for a perfect gas,
which expands as

1 + γM2p̂0 = R̄θ̂ 0 + T̄ ρ̂0.

Eliminating û0, v̂0, ρ̂0 and θ̂0 leads to the familiar compressible Rayleigh equation for
the leading-order pressure p̂0:

Lp̂0 ≡
{

∂2

∂y2
+

(
T̄ ′

T̄
− 2Ū ′

(Ū − c)

)
∂

∂y
− α2

(
1 − M2(Ū − c)2

T̄

)}
p̂0 = 0. (3.3)

Let Ū± and T̄ ± denote the velocity and temperature in the free streams. Then as
y → ±∞,

p̂0 ∼ C±
∞ eiq±y with q± = α

(
M2(Ū± − c)2

T̄ ±
− 1

)1/2

where the branch cuts are taken to ensure that the disturbance is an outgoing wave,
and C±

∞ are constants that can be determined by normalization of the eigenfunction.
For a general growing supersonic mode, its eigenfunction p̂0 decays exponentially as
y → ±∞. However, at the neutral location x3,n, α and c are both real and hence p̂0 is
finite, exhibiting a sinusoidal wave behaviour at ∞ or −∞, provided

|c − Ū±| > T
1/2

±
/
M ≡ c±. (3.4)

This implies that in the vicinity of the neutral position, the energy of a supersonic
instability mode radiates to the far field in the form of a Mach wave, if the disturbance
propagates relative to the free stream at a speed larger than the ambient sound speed
c±. This is expected on the basis of the familiar wavy-wall analogy. In the present
situation, because condition (3.4) is satisfied only close to x3,n, the apparent source of
radiation would appear to be localized. The wavy-wall analogy cannot provide any
information about the character of the directivity of the acoustic field.

Let yc denote the critical level, at which Ū (yc) − c = 0. It was shown by Leib (1991)
that as η ≡ y − yc → 0,

p̂0 ∼ Ū ′
c

T̄ c

{
α2

3
a±φa + φb +

α2

3

(
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

)
ln|η|φa

}
, (3.5)

where the subscript c signifies a quantity evaluated at yc, and

φa ∼ η3 + χaη
4 + · · · ,

φb ∼ 1 − 1
2
α2η2 + χbη

4 + · · · ,

}
(3.6)
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with

χa = −3

4

(
T̄ ′

T̄
− Ū ′′

Ū ′

)
,

χb =
α2

4

{
T̄ ′′

c

T̄ c

−
(

T̄ ′
c

T̄ c

)2

+ 1
2

(
Ū ′′

c

Ū ′
c

)2

− 2

3

Ū ′′′
c

Ū ′
c

− M2Ū ′2
c

T̄ c

− α2

2
+

11

12

(
T̄ ′

T̄
− Ū ′′

Ū ′

)2}
.

It follows from the y-momentum and energy equations in (3.2) that as η → 0,

v̂0 ∼ −iα

{
1 −

(
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

)
ηln|η| +

(
2

3

T̄ ′
c

T̄ c

− 1

6

Ū ′′
c

Ū ′
c

− a±
)

η + · · ·
}

,

θ̂0 ∼ T̄ ′
c

Ū ′
cη

.

The logarithmic singularity in p̂0 arises because the critical level of a supersonic mode
does not coincide the generalized inflection point. The temperature perturbation
exhibits the familiar singularity of a simple-pole form. The dominant nonlinear effect
in the critical layer is associated with these two singularities.

At the next order, it can be shown that p̂1 satisfies the inhomogeneous Rayleigh
equation

Lp̂1 =
2ic

α

∂A

∂x̄

{
Ū ′p̂′

0

(Ū − c)2
+

α2

c

[
M2Ū (Ū − c)

T̄
− 1

]
p̂0

}
+

2i

α

∂A

∂t̄

{
Ū ′p̂′

0

(Ū − c)2
+

α2M2(Ū − c)p̂0

T̄

}
− x̄A∆1, (3.7)

where

∆1 =

{
2Ū ′

Ū − c

(
Ū 1

Ū − c
− Ū ′

1

Ū ′

)
+

T ′

T

(
T̄ ′

1

T̄ ′ − T̄ 1

T̄

)}
p̂′

0 +α2M2 (Ū − c)2

T̄

(
2Ū 1

Ū − c
− T̄ 1

T̄

)
p̂0.

It can be shown that

p̂1 ∼ y eiq±y as y → ±∞,

implying that the expansion (3.1) becomes disordered when y ∼ R1/2. On the other
hand, as y → yc,

p̂1 ∼ α2

T̄ c

[
i

α

(
∂A

∂t̄
+ c

∂A

∂x̄

)
− Ū 1cx̄A

]{
η −

(
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

)
η2ln|η|

−
[
a± +

1

3

(
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

)]
η2 +

1

3
j η3ln|η|

}
+

Ū ′
c

T̄ c

(iαA)η2 +

(
α2Ū ′

c

3T̄ c

x̄A

)
j1η

3ln|η|

+ c±φa + d

[
φb +

α2

3

(
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

)
ln|η|φa

]
, (3.8)

where c± and d are arbitrary functions of x̄, and

j =
T̄ ′′

c

T̄ c

− Ū ′′′
c

Ū ′
c

−
(

T̄ ′
c

T̄ c

)2

+

(
Ū ′′

c

Ū ′
c

)2

+ 3

(
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

)2

− 2

(
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

)
Ū ′

c

Ū c

,

j1 =
T̄ ′

c

T̄ c

(
T̄ ′

1c

T̄ ′
c

− T̄ 1c

T̄ c

)
+

Ū ′′
c

Ū ′
c

(
Ū ′

1c

Ū ′
c

− Ū ′′
1c

Ū ′′
c

)
− 2

(
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

)
Ū 1c

Ū c

.
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In order for the inhomogeneous system (3.7) to have an acceptable solution, it has to
satisfy a solvability condition. The latter can be derived by multiplying both sides of
(3.7) by T̄ /(Ū − c)2p̂0 and integrating from −∞ and ∞, leading to

− 1

Ū ′
c

{
3(c+ − c−) − 2

α2

T̄ c

[
i

α

(
∂A

∂t̄
+ c

∂A

∂x̄

)
− Ū 1cx̄A

](
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

)
(a+ − a−)

− α2d(a+ − a−)

}
=

2i

α

[
cI2

∂A

∂x̄
+ I3

∂A

∂t̄

]
− (x̄A)I1, (3.9)

where

I1 =

∫ ∞

−∞

{[
2Ū ′

Ū −c

(
Ū 1

Ū −c
− Ū ′

1

Ū ′

)
+

T ′

T

(
T̄ ′

1

T̄ ′ − T̄ 1

T̄

)]
T̄ p̂0p̂

′
0

(Ū −c)2
+α2M2

(
2Ū 1

Ū −c
− T̄ 1

T̄

)
p̂2

0

}
dy,

I2 =

∫ ∞

−∞

{
T̄ Ū ′p̂0p̂

′
0

(Ū − c)4
+

α2

c

[
M2Ū

(Ū − c)
− T̄

(Ū − c)2

]
p̂2

0

}
dy,

I3 =

∫ ∞

−∞

{
T̄ Ū ′p̂0p̂

′
0

(Ū − c)4
+

α2M2p̂2
0

Ū − c

}
dy;

these integrals are to be understood as finite parts in the sense of Hadamard. The
jumps (a+ − a−) and (c+ − c−) will be derived by analysing the flow in the critical
layer.

3.2. Critical layer

The solution in the main shear layer becomes singular at the critical level yc. A
separate solution must be constructed in a thin region surrounding yc, where viscosity
is introduced to remove the singularity. The dominant balance is therefore between
the advection and viscous diffusion, and that determines the critical-layer width to be
O(R−1/3); so we introduce the local transverse variable

Y = (y − yc)/R
−1/3. (3.10)

The solution for the perturbation expands as

u = ε
(
U1E + R−1/6U2E + R−1/4UM + R−1/2U3E

)
+ c.c. + · · · ,

θ = εR1/3
(
Θ1E + R−1/6Θ2E + R−1/4ΘM + R−1/2Θ3E

)
+ c.c. + · · · ,

v = ε
(
V0E + R−1/3V1E + R−1/2V2E + R−7/12VM + R−5/6V3E

)
+ c.c. + · · · ,

p = ε
(
P0E + R−1/3P1E + R−1/2P2E + R−5/6P3E

)
+ c.c. + · · · .

 (3.11)

Here P0 = AŪ ′
c/T̄ c, and V0 = −iαA, which are simply the trivial continuations of the

leading-order main-layer solution. Terms at logarithmic orders have not been written
out explicitly since they automatically match with those in the outer solution. The
expansion for the density of the perturbation, ρ, is omitted, since to the required
order of approximation, ρ is related to the temperature θ via

ρ = − θ

T̄ 2
c

.

The leading-order term in the temperature expansion, Θ̃1, is governed by

LκΘ1 + T̄ ′
cV0 = 0,
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where the operator Lκ is defined as

Lκ = iαŪ ′
cY − T̄ cκc

∂2

∂Y 2
. (3.12)

The solution is found to be

Θ1 = (iαT̄ ′
cA)

∫ ∞

0

exp(−sκξ
3 − iαŪ ′

cY ξ ) dξ, with sκ = 1
3
(αŪ ′

c)
2T̄ cκc. (3.13)

Expansion of the continuity and x-momentum equations yields

iαŪ ′
cY

(
−Θ1/T̄

2
c

)
+

1

T̄ c

(iαU1 + V1,Y ) − T̄ ′
c

T̄ 2
c

V0 = 0,

LµU1 + Ū ′
cV1 + Ū ′′

cYV0 = −iαT̄ cP1 − T̄ ′
cY (iα)P0 + T̄ cµ

′
cŪ

′
c

∂Θ1

∂Y
,

where Lµ is the same as Lκ provided that µc replaces κc in (3.12). The above two equa-
tions can be combined to obtain

LµU1,Y = Ū ′
c(T̄ cµ

′
c − κc)Θ1,YY − iαŪ ′

c

(
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

)
A + · · · ,

where we have ignored the terms which do not contribute to the jump. The solution
is found to be

U1,Y = (iαŪ ′
cA)

T̄ ′
c(T̄ cµ

′
c − κc)

T̄ c(µc − κc)

∫ ∞

0

[1 − exp(−(sκ − s)ξ 3)] exp(−sξ 3 − iαŪ ′
cY ξ ) dξ

− (iαŪ ′
cA)

(
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

) ∫ ∞

0

exp(−sξ 3 − iαŪ ′
cY ξ ) dξ, (3.14)

with s = 1
3
(αŪ ′

c)
2T̄ cµc. Matching U1 with its outer counterpart determines the jump

a+ − a− =

(
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

)
πi. (3.15)

The nonlinear interaction of the wave at the quadratic order generates a first
harmonic as well as a mean-flow distortion, but only the latter influences the evolution
of the wave; so we shall consider this component only. It follows from the energy
equation that

T̄ cκc

∂2ΘM

∂Y 2
= V0

∂Θ∗
1

∂Y
, (3.16)

and hence

ΘM,Y = −α2T̄ ′
c

T̄ cκc

|A|2
∫ ∞

0

exp(−sκξ
3 + iαŪ ′

cY ξ ) dξ.

The continuity and x-momentum equations at this order give

1

T̄ c

∂VM

∂Y
=

V0

T̄ 2
c

∂Θ∗
1

∂Y
, (3.17)

Ū ′
cVM − T̄ cµc

∂2UM

∂Y 2
= −V0

∂U ∗
1

∂Y
− (iαP0)Θ

∗
1 + T̄ cµ

′
cŪ

′
cΘM,Y . (3.18)

Equations (3.16) and (3.17) indicate that

VM = κcΘM,Y ,
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which is inserted into (3.18), to give

UM,YY = − α2Ū ′
cT̄

′
c(T̄ cµ

′
c −κc)

T̄ 2
cµc(µc −κc)

|A|2
∫ ∞

0

[exp(−(s −sκ )ξ
3)−s/sκ ]exp(−sκξ

3 +iαŪ ′
cY ξ ) dξ

+
α2Ū ′

c

T̄ cµc

(
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

)
|A|2

∫ ∞

0

exp(−sξ 3 + iαŪ ′
cY ξ ) dξ

+
α2Ū ′

cT̄
′
c

T̄ 2
cµc

|A|2
∫ ∞

0

exp(−sκξ
3 + iαŪ ′

cY ξ ) dξ. (3.19)

The jump (c+ − c−) can be calculated by considering (U3, V3, Θ3, P3), which satisfy
the equations

LµU3 + Ū ′
cV3 = −iαT̄ cP3 − V0UM,Y − (iαP0)ΘM + T̄ cµ

′
cŪ

′
cΘ3,Y + · · · , (3.20)

iαŪ ′
cY

(
−Θ3/T̄

2
c

)
+

1

T̄ c

(iαU3 + V3,Y ) =
V0

T̄ 2
c

ΘM,Y + · · · , (3.21)

LκΘ3 = −V0ΘM,Y + · · · . (3.22)

Here we have retained only the terms associated with the fundamental interacting
with the mean-flow distortion, which will contribute the nonlinear part of the
jump (c+ − c−). The linear inhomogeneous terms have not been included since they
contribute to the linear part of (c+ − c−). That part corresponds to the familiar (−π)
phase jump across the critical layer of the logarithmic singularity in the outer solution,
and so can be easily written out. In order to calculate the nonlinear part of the jump,
equation (3.22) is solved first to obtain

Θ3 = − iα3T̄ ′
c

T̄ cκc

A|A|2
∫ ∞

0

∫ ∞

0

exp[−2sκξ
3 + sκ (ξ − η)3 + iαŪ ′

c(ξ − η)Y ] dξ dη. (3.23)

Equations (3.20) and (3.21) can be reduced to

LµU3,Y = −V0UM,YY − (iαP0)ΘM,Y + Ū ′
c(T̄ cµ

′
c − κc)Θ3,YY + · · · ,

which is then solved by using Fourier transform. Matching U3 with the outer solution
determines the jump

c+ − c− =
1

3

α2

T̄ c

[
i

α

(
∂A

∂t̄
+ c

∂A

∂x̄

)
− Ū 1cx̄A

]
jπi +

(
α2Ū ′

c

3T̄ c

x̄A

)
j1πi

+ d
α2

3

(
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

)
πi +

Λ

3
A|A|2, (3.24)

where

Λ =
πα4Ū ′2

c

3T̄ 2
cµc

{
T̄ ′

c(T̄ cµ
′
c − κc)

T̄ c(µc − κc)

((
µc

κc

)4/3

− 1

)
+

(
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

)
+

T̄ ′
c

T̄ c

(
1 +

µc

κc

)2/3(
2µc

κc

)1/3}
(2s)−1/3�

(
1
3

)
. (3.25)

3.3. Amplitude equation and solution

Inserting the jumps (3.15) and (3.24) into (3.9), we obtain the amplitude equation
for A:

∂A

∂x̄
+ c−1

g

∂A

∂t̄
= σ x̄A + lA|A|2, (3.26)
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where

cg = cG

/{
2I3 +

α2

T̄ cŪ ′
c

[
j − 2

(
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

)2]
πi

}
,

σ = (−iα/c)

{
I1 +

α2

T̄ c

[
Ū 1c

Ū ′
c

(
j − 2

(
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

)2)
− j1

]
πi

}/
G,

l = iαΛ/(cŪ ′
cG),

with

G = 2I2 +
α2

T̄ cŪ ′
c

[
j − 2

(
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

)2]
πi.

Note that because the group velocity cg is complex, the usual idea of describing a
wavepacket in a coordinate travelling with cg is inapplicable (cf. Stewartson & Stuart
1971). Thus, the appropriate evolution equation is of first order as opposed to the
familiar Schrödinger type of equation.

If A is independent of t̄ , the disturbance consists of a pure tone and will be referred
to as a simple or single wave. In this case, the appropriate initial condition for the
evolution equation (3.26) is

A → a0 eσ x̄2/2 as x̄ → −∞ (3.27)

so that the nonlinear solution matches to the linear stage upstream. Here the constant
a0 is a measure of the initial amplitude, and it can be taken to be real without loss of
generality. Equation (3.26) can be solved analytically to give

|A|2 = a2
0 eσr x̄

2

[
1 − 2lra

2
0

∫ x̄

−∞
eσr ξ

2

dξ

]−1

, (3.28)

where σr and lr stand for the real parts of σ and l respectively, with σr < 0 as expected.
The nature of the solution depends on lr and a0. If lr < 0, nonlinearity has a stabilizing
effect and the amplitude grows first and then ultimately decays to zero for all values
of a0. However if lr > 0, the amplitude goes through amplification followed by decay
only when a0 is below a threshold value ac, with ac determined by

a2
c =

1

2lr

√
−σr

π
. (3.29)

For a0 >ac, the solution develops a singularity at a finite distance x̄c, with x̄c deter-
mined by

2lra
2
0

∫ x̄c

−∞
eσr ξ

2

dξ = 1.

For the general modulation case, it is convenient to consider the solution for A in
the spectral space. Let Â(x̄, ω̃) denote the Fourier transform of A with respect to t̄ .
Then the Fourier transform of (3.26) becomes

Â′(x̄, ω̃) =
(
σ x̄ − ic−1

g ω̃
)
Â+

l

(2π)2

∫ ∞

−∞

∫ ∞

−∞
Â(ω̃−ω̃1)Â(ω̃2)Â

∗(ω̃2 −ω̃1) dω̃2 dω̃1. (3.30)

It is to be solved subject to the initial condition

Â(x̄, ω̃) → as(ω̃) exp
(

1
2
σ x̄2 − ic−1

g ω̃x̄
)

as x̄ → −∞. (3.31)
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Obviously this again follows from the requirement of matching to the linear stage
upstream, during which the disturbance has a spectrum as(ω̃), with each component
evolving independently. To be specific, we shall consider

as(ω̃) = a0 e−∆|ω̃|, (3.32)

where a0 and ∆ are two parameters measuring the overall intensity and the envelope
time scale of the wavepacket respectively. Alternatively in the spectral space, ∆−1

represents the spectral bandwidth of the wavepacket. A simple wave can be viewed
as the limiting case ∆ � 1.

4. Mach wave radiation
4.1. Near field of Mach waves

As was noted earlier, a neutral supersonic mode is oscillatory without exhibiting
attenuation on the length scale of y =O(1). Thus significant perturbations persist
outside the shear layer. These perturbations represent the Mach waves, the character
of which is the focus of this section. As will be shown, the Mach wave field consists
of two distinct regions. The first corresponds to y ∼ R−1/2, and it is suggested by the
fact that the main-deck expansion (3.1) becomes disordered when y ∼ R1/2. (A similar
breakdown occurs in the case of an instability mode evolving on a subsonic shear
flow (Tam & Morris 1980)). To describe the wave modulation in this region, which
will be referred to as the near field of the Mach waves, we introduce the variable

ȳ = R−1/2y. (4.1)

The solution for the perturbation, the pressure p say, must be a function of x, y, t, x̄ȳ

and t̄ , i.e.

p = p(x, y, t; x̄, ȳ, t̄).

Note that since the disturbance exhibits wave character in both x- and y-directions,
the envelope modulations in these two directions are treated on an equal footing by
simultaneously introducing the two slow variables x̄ and ȳ.

In each stream, the perturbation expands as

(u, p, θ, ρ) = ε
[
(u0, p0, θ0, ρ0)+R−1/2(u1, p1, θ1, ρ1)+R−1(u2, p2, θ2, ρ2)+ · · ·

]
. (4.2)

The perturbation is governed by Euler equations linearized about the uniform
background flow (Ū±, T̄ ±, R̄±). At leading order, they are(

∂

∂t
+ Ū±

∂

∂x

)
ρ0 +

1

T̄ ±
∇ · u0 = 0,(

∂

∂t
+ Ū±

∂

∂x

)
u0 = −T̄ ±∇p0,

R̄±

(
∂

∂t
+ Ū±

∂

∂x

)
θ0 = (γ − 1)M2

(
∂

∂t
+ Ū±

∂

∂x

)
p0,

γM2p0 = T̄ ±ρ0 + R̄±θ0.


(4.3)

Elimination of u0, θ0 and ρ0 leads to the convected wave equation for the pressure
p0:

M2
±

(
∂

∂t
+ Ū±

∂

∂x

)2

p0 − ∇2p0 = 0 with M± = M/

√
T̄ ±. (4.4)
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This equation has the characteristics

ζ = x − ct + q±y = constant, q± = [M2
±(Ū± − c)2 − 1]1/2. (4.5)

The appropriate solution consistent with the far-field asymptote of the main-deck
solution takes the form

p0(x, y, t; x̄, ȳ) = p̄0(x̄, ȳ) eiαζ + c.c., (4.6)

where p̄0 represents the envelope of the Mach wave, and its functional form will be
determined by considering p1.

Proceeding to the next order, we find that

M2
±

(
∂

∂t
+ Ū±

∂

∂x

)2

p1 − ∇2p1 = −2

{
M2

±(Ū± − c)
∂

∂t̄

+ [M2
±Ū±(Ū± − c) − 1]

∂

∂x̄
− q±

∂

∂ȳ

}
∂p0

∂ζ
. (4.7)

The solution for p1 would contain an unacceptable secular term proportional to ζ

as ζ → ∞, unless the right-hand side is identically zero. Use of (4.6) at this condition
yields

M2
±(Ū± − c)

∂p̄0

∂t̄
+ {M2

±Ū±(Ū± − c) − 1}∂p̄0

∂x̄
− q±

∂p̄0

∂ȳ
= 0, (4.8)

while matching with the main-deck solution provides the boundary condition

p̄0(x̄, ȳ, t̄) = C±
∞A(x̄, t̄) at ȳ = 0. (4.9)

Equation (4.8) has characteristics

ξ̄ = x̄ + q−1
± (M2

±Ū±(Ū± − c) − 1)ȳ = constant,

η̄ = t̄ + M2
±(Ū± − c)q−1

± ȳ = constant,

}
(4.10)

along which the envelope p̄0 is constant, i.e. p̄0(x̄, ȳ, t̄) = p̄0(ξ̄ , η̄). Applying the
boundary condition (4.9) then fully determines p̄0 as

p̄0(x̄, ȳ, t̄) = C±
∞A(ξ̄ , η̄). (4.11)

Therefore, the radiated Mach wave in the near field, where x̄, ȳ ∼ O(1), is determined
explicitly in terms of the amplitude A:

p0 = C±
∞A(ξ̄ , η̄) eiαζ + c.c. (4.12)

With this analytical result, the mechanism or process of Mach wave radiation by
a supersonic instability wavetrain now becomes clear: a Mach wave is formed as a
result of the phase of the supersonic wavetrain propagating along the characteristics
ζ = constant, while its envelope propagates along the characteristics ξ̄ =constant and
η̄ = constant. This is illustrated schematically in figure 1. The phase relation of the
Mach wave fronts is as expected from the familiar wavy-wall analogy, but added is
the crucial information about the envelope.

For the relatively weak disturbance considered here, its amplitude A → 0 as x̄ → ±∞.
Suppose that A attains its maximum at x̄s , and then the radiated Mach wave is
strongest along the line

x̄ + q−1
± (M2

±Ū±(Ū± − c) − 1)ȳ = x̄s, (4.13)
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Mach wave fronts
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Figure 1. A sketch illustrating the radiation process and the structure of the Mach wave field.

and its energy concentrates in a region corresponding to ξ̄ = O(1), which will be
referred to as the Mach wave beam (see figure 1). Obviously, the direction of the beam
depends on three parameters: the phase speed of the instability mode c, the mean
velocity Ū± of the ambient stream, and the jet Mach number M± based on the
ambient sound speed. In particular for planar jets, Ū± =0, and (4.13) reduces to

x̄ − ȳ/q± = x̄s,

so that the Mach wave beam is perpendicular to the Mach wave front, and appears
to emanate from the streamwise location where the amplitude of the instability mode
is maximum.

The boundary-value problem (4.8)–(4.9) can alternatively be solved by Fourier
transform with respect to t̄ to give the solution

p̄0 = C±
∞

∫ ∞

−∞
Â(ξ̄ , ω̃) exp

[
i
M2

±

q±
(Ū± − c)ω̃ȳ + iω̃t̄

]
dω̃ ≡ C±

∞A(ξ̄ , η̄),

where Â(ξ̄ , ω̃) is obtained by solving (3.30)–(3.31). The quantity of interest is the ‘time
average’ of the acoustic power p̄2

0, defined here as the integral of p̄2
0 from −∞ to ∞

divided by ∆. It follows from the convolution theorem that

p̄2
0 =

|C±
∞|2

2π∆

∫ ∞

−∞
|Â(ξ, ω̃)|2 dω̃ ≡ |C±

∞|2A(ξ, t̄)2. (4.14)

Formulae (4.11) and (4.14) show that the Mach wave radiated by a wavepacket exhibits
the same feature as that emitted by a single wave: the acoustic energy is conserved
along the straight characteristic lines ξ̄ = constant.

4.2. Far field of the Mach wave beam

The analysis in § 4.1 can be carried out to high orders. Consideration of p2 leads
to a secular condition for p1, which in turn shows that p1 ∼ ȳA(ξ̄ , η̄), implying that
expansion (4.2) breaks down when ȳ ∼ R1/2. The radiated Mach wave concentrates
in the beam corresponding to ξ̄ =O(1) with little wave activity outside this beam.
In the following, we consider the solution in the far field of the Mach wave beam
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(see figure 1), represented by

ȳ = O
(
R1/2

)
, ξ̄ = O(1). (4.15)

The appropriate variable is

ỹ = R−1/2ȳ = R−1y, (4.16)

and the expansion for the perturbation pressure now takes the form

p = [p̃0(ξ̄ , η̄, ỹ) + R−1p̃1(ξ̄ , η̄, ỹ) + · · ·] eiαζ + c.c.

The secular condition for p̃1 now becomes

2iαq±
∂p̃0

∂ỹ
+ q−2

± M2
±

{
c2 ∂2p̃0

∂ξ̄ 2
+ 2c

∂2p̃0

∂ξ̄∂η̄
+

∂2p̃0

∂η̄2

}
= 0, (4.17)

while matching with (4.11) imposes the boundary condition

p̃0 = C±
∞A(ξ̄ , η̄) at ỹ = 0. (4.18)

For a simple wave, A is independent of t̄ and hence of η̄, and equation (4.17) then
reduces to

2iαq±
∂p̃0

∂ỹ
+ q−2

± M2
±c2 ∂2p̃

∂ξ̄ 2
= 0, (4.19)

which is a Schrödinger equation with ỹ playing the role of time in the conventional
setting. Equation (4.19) can be solved as a heat equation through the substitution
ỹ → iỹ and analytic continuation in the resulting solution.† The equation may
alternatively be solved by Fourier transform with respect to ξ̄ . Either way the solution
is found to be

p̃0(ξ̄ , ỹ) =
e−πi/4

√
ỹ

(
αq3

±

2πM2
±c2

)1/2

C±
∞

∫ ∞

−∞
A(ζ ) exp

{
iαq3

±

2M2
±c2ỹ

(ξ̄ − ζ )2
}

dζ. (4.20)

The full system (4.17)–(4.18) can be solved best by taking the Fourier transform

with respect to η̄. Then the Fourier transform of p̃0, P̂ , is found to be

P̂ (ξ̄ , ω̃, ỹ) =
e−πi/4

√
ỹ

(
αq3

±

2πM2
±c2

)1/2

C±
∞Q̂(ξ̄ , ω̃, ỹ) exp

{
−

iM2
±ω̃2ỹ

2αq3
±

}
(4.21)

with

Q̂(ξ̄ , ω̃, ỹ) =

∫ ∞

−∞
Â(ζ, ω̃) exp

{
iαq3

±

2M2
±c2ỹ

(
ξ̄ − ζ +

M2
±cω̃ỹ

αq3
±

)2}
dζ. (4.22)

For a wavetrain with a frequency bandwidth ∆−1, the ‘time averaged’ acoustic power,
as defined in the previous subsection, is given by

(p̃0)2 =
1

ỹ

(
αq3

±|C±
∞|2

4π2M2
±c2∆

)∫ ∞

−∞
|Q̂(ξ, ω̃, ỹ)|2 dω̃. (4.23)

In the far field of the Mach wave beam, acoustic energy is no longer conserved along
the straight lines ξ̄ =constant, that is, the diffraction effect is now significant.

† The author is indebted to Dr John Gibbons for pointing this method out to him.
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Thus far, we have shown that the Mach wave field is fully determined once the
amplitude function A is known. It should be noted that although the analysis in this
section (and also that of the forthcoming § 5.2) is presented for a wavetrain modulated
on the particular time and length scales of O(R1/2), it in fact can be easily recast for
a wavetrain modulated on arbitrary slow scales.

The idea of matching an ‘outer’ acoustic field with an ‘inner’ hydrodynamic is
a fundamental principle in the asymptotic approach to aeroacoustics. It has been
employed by Tam & Morris (1980) and Crighton & Huerre (1990) to study sound
waves radiated by a subsonically propagating instability wave. The present work
shows that the acoustic field emitted by a supersonic mode has a quite different
structure, and the analysis involved also differs considerably.

We end this section by contrasting the present approach with that of Tam & Burton
(1984a, b). Apart from a linearly evolving supersonic mode being considered in their
work, both studies used essentially the same basic idea of determining the Mach wave,
i.e. by matching with the local hydrodynamic field. Here we are able to derive a more
explicit result by taking advantage of the fact that the length scales characterizing
the wavefront/phase and envelope of the Mach wave are asymptotically distinct. In
seeking the solution for the Mach wave, Tam & Burton (1984a, b) did not exploit
such a scale disparity, and as a result the solution had to be expressed in terms of a
Fourier integral, which has to be evaluated numerically in order to see the nature of
the Mach wave radiation, whereas the simple analytical result derived in the present
paper provides an immediate characterization of the radiated Mach waves.

It is straightforward to adapt the analysis and results in this section to the analogous
problem in boundary layers. In the rest of the paper, we shall consider a circular jet,
which is one of the most important practical flows in which Mach wave radiation
plays a significant part in noise generation.

5. Extension to a circular jet
For a circular jet, it is natural to use cylindric polar coordinates (x, r, θ ). The velocity

components in the axial, radial and azimuthal directions are denoted by (u, v, w).
The exit nozzle radius RJ and the exit speed UJ will be taken as the reference length
and velocity respectively so that the reference time is RJ /UJ . The density ρ and
temperature θ are non-dimensionalized by the jet density ρJ and temperature ΘJ ,
respectively. We define the Reynolds number and Mach number as

R = ρJ UJ RJ /µJ , M = UJ /cJ (5.1)

where cJ is the sound speed at the jet exit.
The linear instability of supersonic jets has been a subject of extensive investigation

(see e.g. Tam & Hu 1989; Luo & Sandham 1997 and references therein). Two families
of supersonic instability modes have been identified: one is a continuation of the
usual incompressible Kelvin–Helmholtz or Rayleigh instability, and the other comes
into existence at some finite M > 1. The present concern is with modes in the first
family as they appear to be a major source of supersonic jet noise (Tam, Chen &
Seiner 1992), at least for relatively low Mach numbers. When such an instability mode
is excited upstream, it will amplify until it approaches the neutral location x3,n, after
which it starts to decay. In the vicinity of x3,n, part of the energy of the mode radiates
to the far field, giving rise to a distinct Mach wave field (Troutt & McLaughlin 1982).

Experiments show that both axisymmetric and helical modes make appreciable
contributions to the jet noise, and so we shall consider the disturbance which is
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either an axisymmetric mode or a pair of helical modes with azimuthal wavenumbers
±m. The helical modes with m = ±1 are particularly important because they have
the largest integral growth (Tam et al. 1992). It turns out that much of the analysis
for both forms of disturbances can be treated on the same footing, although there
exists a significant difference in their nonlinear critical-layer dynamics, which we shall
highlight later in § 5.3.

5.1. Main layer

In the main deck, the disturbance expands as

(u, v, w, p, θ, ρ) = ε[A(x̄, t̄)(û0, v̂0, ŵ0, p̂0, θ̂0, ρ̂0)

+R−1/2(û1, v̂1, ŵ1, p̂1, θ̂1, ρ̂1)]E cos mθ + c.c. + · · · . (5.2)

The axisymmetric mode appears as a special case with m =0. The threshold amplitude
ε for nonlinear development depends on the form of the disturbances, and will be
specified later. At the present stage, it suffices to mention that ε is sufficiently small
that the perturbation in the main deck is linear to the required order of approximation.
The governing equations, at leading order, are

iα(Ū − c)ρ̂0 + R̄′v̂0 + R̄

(
iαû0 +

∂v̂0

∂r
+

v̂0

r
+

m

r
ŵ0

)
= 0,

iα(Ū − c)û0 + Ū ′v̂0 = −iαT̄ p̂0,

iα(Ū − c)v̂0 = −T̄
∂p̂0

∂r
,

iα(Ū − c)ŵ0 =
T̄ m

r
p̂0,

iα(Ū − c)θ̂0 + T̄ ′v̂0 = iαM2(γ − 1)(Ū − c)T̄ p̂0.

On eliminating û0, v̂0, ŵ0, ρ̂0 and θ̂0 in favour of the pressure p̂0, we obtain{
∂2

∂r2
+

1

r

∂

∂r
+

(
T̄ ′

T̄
− 2Ū ′

Ū − c

)
∂

∂r
+

(
α2M2

T̄
(Ū − c)2 − α2 − m2

r2

)}
p̂0 = 0. (5.3)

It follows from the regularity requirement at r = 0 that

p̂0 ∼ C0

(
νr

2

)m[
1

m!
+

(νr)2

4(m + 1)!
+ · · ·

]
as r → 0, (5.4)

where ν =α[1 − M2(c − 1)2]1/2, Bessel function of order m, whilst and C0 is a constant
to be determined by normalization of the eigenfunction.

In the ambient fluid, Ū → 0 and T̄ → Ta (constant), and it follows from (5.3) that
as r → ∞,

p̂0 → C∞√
r

eiαqr with q = (M2c2/Ta − 1)1/2, (5.5)

where Ta denotes the temperature of the ambient fluid, and constant C∞ is to be fixed
by normalization. Result (5.5) indicates that the mode is radiating if c > T 1/2

a /M ≡ ca ,
i.e. if the instability wave travels faster than the ambient sound speed ca .



Mach wave radiation of nonlinearly evolving instability modes 139

In the vicinity of the critical level rc, where Ū (rc)−c =0, p̂0 has the local asymptotic
solution

p̂0 ∼ Ū ′
c

T̄ c

{
ᾱ2

3
a±φa + φb +

ᾱ2

3
k̂ ln |η|φa

}
, (5.6)

where η ≡ r − rc � 1, and

ᾱ =
(
α2 + m2

/
r2
c

)1/2
, k̂ =

(
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

+
1

rc

)
− 2m2

ᾱ2r3
c

.

The functions φa and φb are as given in (3.6) except that χa and χb are modified to

χa = −3

4

(
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

+
1

rc

)
,

χb =
1

4

{
ᾱ2

[
T̄ ′′

c

T̄ c

−
(

T̄ ′
c

T̄ c

)2

+ 1
2

(
Ū ′′

c

Ū ′
c

)2

− 2

3

Ū ′′′
c

Ū ′
c

− 1

r2
c

− ᾱ2

2
+

11

12

(
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

+
1

rc

)2]
− α2M2Ū ′2

c

T̄ c

− 11

6

(
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

+
1

rc

)
m2

r3
c

+
3m2

r4
c

}
, (5.7)

and the (−α2/2) in φb is replaced by (−ᾱ2/2). For helical modes, the streamwise and
spanwise velocity components both exhibit a singularity of a single-pole form at the
critical level, i.e.

û0 ∼
(

m2

α2r2
c

)
1

η
, ŵ0 ∼ −

(
im

αrc

)
1

η
. (5.8)

It is easy to show that p̂1 is governed by an inhomogeneous Rayleigh equation
with the same right-hand side as (3.7). It is found that as η → 0,

p̂1 ∼ ᾱ2

T̄ c

[
i

α

(
∂A

∂t̄
+c

∂A

∂x̄

)
−Ū 1cx̄A

]{
η− k̂η2 ln|η|−

(
a±+ 1

3
k̂+

m2

ᾱ2r3
c

)
η2+ 1

3
jη3 ln|η|

}
+

Ū ′
c

T̄ c

(iαA′)η2 +

(
ᾱ2Ū ′

c

3T̄ c

x̄A

)
j1η

3 ln |η| + c±φa + d

[
φb +

ᾱ2

3
k̂ ln |η|φa

]
, (5.9)

where

j =
T̄ ′′

c

T̄ c

− Ū ′′′
c

Ū ′
c

−
(

T̄ ′
c

T̄ c

)2

+

(
Ū ′′

c

Ū ′
c

)2

− 1

r2
c

+ 3

(
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

+
1

rc

)2

− 2α2

ᾱ2

(
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

+
1

rc

)
Ū ′

c

Ū c

− 2m2

ᾱ2r3
c

[
2

(
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

+
1

rc

)
− 3

rc

]
,

j1 =
T̄ ′

c

T̄ c

(
T̄ ′

1c

T̄ ′
c

− T̄ 1c

T̄ c

)
+

Ū ′′
c

Ū ′
c

(
Ū ′

1c

Ū ′
c

− Ū ′′
1c

Ū ′′
c

)
− 2α2

ᾱ2

(
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

+
1

rc

)
Ū 1c

Ū c

.


(5.10)

Multiplying the inhomogeneous Rayleigh equation by rT̄ p̂0/(Ū − c)2 and integrating
by parts, we arrive at the solvability condition

− rc

Ū ′
c

{
3(c+ − c−) − 2ᾱ2

T̄ c

[
i

α

(
∂A

∂t̄
+ c

∂A

∂x̄

)
− Ū 1cx̄A

](
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

+
1

rc

)
(a+ − a−)

− ᾱ2d(a+ − a−)

}
=

2i

α

[
cI2

∂A

∂x̄
+ I3

∂A

∂t̄

]
− (x̄A)I1 (5.11)
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where

I1 =

∫ ∞

0

{[
2Ū ′

Ū −c

(
Ū 1

Ū −c
− Ū ′

1

Ū ′

)
+

T ′

T

(
T̄ ′

1

T̄ ′ − T̄ 1

T̄

)]
T̄ (rp̂0p̂

′
0)

(Ū −c)2
+α2M2

(
2Ū 1

Ū −c
− T̄ 1

T̄

)
rp̂2

0

}
dr,

I2 =

∫ ∞

0

{
T̄ Ū ′(rp̂0p̂

′
0)

(Ū − c)4
+

α2

c

[
M2Ū

(Ū − c)
− T̄

(Ū − c)2

]
rp̂2

0

}
dr,

I3 =

∫ ∞

−∞

{
T̄ Ū ′(rp̂0p̂

′
0)

(Ū − c)4
+

α2M2rp̂2
0

Ū − c

}
dr.

The jumps (a+ − a−) and (c+ − c−) will be calculated in § 5.3 by considering the flow
within the critical layer.

5.2. Mach wave field

It can be shown that p̂1 ∼ O(r1/2) for r � 1. Therefore the main-layer expansion (5.2)
breaks down when r ∼ R1/2, and the large-r asymptote of the instability mode (5.5)
cannot fully represent the radiated Mach wave field. Analogous to the planar case,
the Mach wave field consists of two regions. The near field corresponds to r ∼ R1/2,
and thus we introduce

r̄ = R−1/2r = O(1). (5.12)

The pressure expands as

p = εR−1/4
(
p0 + R−1/2p1 + · · ·

)
, (5.13)

and similar expansions hold for other quantities. As is expected, the leading-order
term p0 is governed by the standard acoustic equation

M2
a

∂2p0

∂t2
−

(
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂x2

)
p0 = 0, (5.14)

where Ma = M/T 1/2
a , i.e. the Mach number based on the ambient sound speed.

Note that the equation applies to helical as well as to axisymmetric disturbances.
This is because the term corresponding to the azimuthal variation, m2/r2, diminishes
in the acoustic region. The Mach wave therefore is quasi-axisymmetric. Equation
(5.14) has the solution

p0 = p̄0(x̄, r̄, t̄) eiα(x+qr−ct) cos(mθ) + c.c.,

consistent with (5.5). As in the planar case, the envelope function p̄0 can be determined
by considering p1. The latter is found to satisfy the equation

M2
a

∂2p1

∂t2
−

(
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂x2

)
p1 = 2

∂2p0

∂r∂r̄
+ 2

∂2p0

∂x∂x̄
+

1

r̄

∂p0

∂r
− 2M2

a

∂2p0

∂t∂t̄
.

To prevent a secular term in the solution for p1 from occurring on the scale of
x = O(1), we require the right-hand side to vanish, and this leads to

2q
∂p̄0

∂r̄
+ 2

∂p̄0

∂x̄
+

q

r̄
p̄0 + 2M2

a c
∂p̄0

∂t̄
= 0.

Moreover, matching with the main-deck solution (see (5.5)) requires

p̄0 → C∞√
r̄
A(x̄, t̄) as r̄ → 0. (5.15)
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The appropriate solution is found to be

p̄0 =
C∞√

r̄
A(ξ̄ , η̄), with ξ̄ = x̄ − r̄/q, η̄ = t̄ −

(
M2

a c
/
q
)
r̄ . (5.16)

In summary, for both axisymmetric and helical supersonic instability modes, the
instantaneous field of the radiated Mach wave is described by the formula

p0 =
C∞√

r̄
A

(
x̄ − r̄/q, t̄ − M2

a c
/
q r̄

)
eiα(x+qr−ct) cos(mθ) + c.c. (5.17)

The simple interpretation of the radiation process in terms of the characteristics, as
given in § 4.1 for the planar case, still applies provided that

√
rp0 is taken to represent

the Mach wave field. Specifically, the acoustic energy flux r |p0|2 propagates along the
characteristics ξ̄ = constant.

Suppose that A(x̄) attains its maximum at x̄s . Then formula (5.16) represents a
pattern of waves which appear to be radiated from a source at x̄s . This prediction
is consistent with the experimental observation of Troutt & McLaughlin (1982). We
note that the DNS results of Mitchell et al. (1997), as presented in their figure 4,
clearly exhibit this feature. Further comparisons will be made in § 6.

The above analysis can be carried out to high orders. Consideration of p1 shows
that p1 ∼

√
r̄A(x̄ − r̄/q, t̄ − M2

a c/qr̄), which implies that expansion (5.13) breaks down
when r̄ ∼ R1/2. As in the planar case, we now seek an appropriate solution in the far
field of the Mach wave beam, corresponding to

r̄ = O
(
R1/2

)
, ξ̄ = O(1), (5.18)

by introducing the variable

r̃ = R−1/2r̄ = R−1r. (5.19)

The large-r̄ asymptote of p0 and p1 suggests that the solution for the pressure should
expand as

p = εR−1/2[p̃0(ξ̄ , η̄, r̃) + R−1p̃1(ξ̄ , η̄, r̃) + · · ·] eα(x+qr−ct) cos mθ + c.c.

The secular condition for p̃1 yields the equation governing p̃0:

2iαq
∂p̃0

∂r̃
+ q−2M2

a

{
c2 ∂2p̃0

∂ξ̄ 2
+ 2c

∂2p̃0

∂ξ̄∂η̄
+

∂2p̃0

∂η̄2

}
+

iq

r̃
p̃0 = 0. (5.20)

In order to match (5.16), p̃0 must satisfy

p̃0 → C∞√
r̃
A(ξ̄ , η̄) as r̃ → 0. (5.21)

In the case of a single wave, for which A is a function of x̄ only, the solution to
(5.20)–(5.21) is found to be

p̃0(ξ̄ , r̃) =
e−πi/4

r̃

(
αq3

2πM2
a c

2

)1/2

C∞

∫ ∞

−∞
A(ζ ) exp

{
iαq3

2M2
a c

2r̃
(ξ̄ − ζ )2

}
dζ. (5.22)

For the case of a modulated wavetrain, solving (5.20)–(5.21) by Fourier transform
with respect to η̄, we obtain

P̂ (ξ̄ , ω̃, r̃) =
e−πi/4

r̃

(
αq3

2πM2
a c

2

)1/2

C∞Q̂(ξ̄ , ω̃, r̃) exp

{
− iM2

a ω̃
2r̃

2αq3

}
(5.23)
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where P̂ denotes the Fourier transform of p̃0, and

Q̂(ξ̄ , ω̃, r̃) =

∫ ∞

−∞
Â(ζ, ω̃) exp

{
iαq3

2M2
a c

2r̃

(
ξ̄ − ζ +

M2
a c ω̃r̃

αq3

)2}
dζ. (5.24)

For a wavepacket with a frequency bandwidth ∆−1, the ‘time averaged’ acoustic
intensity can be expressed as

(p̃0)2 =
1

r̃2

(
αq3|C∞|2
4π2M2

a c
2∆

)∫ ∞

−∞
|Q̂(ξ, ω̃, r̃)|2 dω̃. (5.25)

The solution (5.16) for the Mach wave is valid for r̄ =O(1), i.e. in the region
r ∼ R−1/2RJ . From the asymptotic point of view, this could be a quite large region for
high-Reynolds-number jets so that the near-field solution (5.16), which is attractive
owing to its simplicity, may suffice for prediction purpose. However, translated to
numerical values the validity region of (5.16) is found to be within just a few jet exit
diameters in certain situations. The far-field solution (5.22) or (5.25) must be employed.
Further elucidation of the relation between the near- and far-field solutions will be
given in § 6, when specific flows are investigated.

As in planar flows, Mach waves in a circular jet also concentrate in the beam
ξ̄ = O(1), which has an intrinsic direction. In fact, the solution for a circular jet differs
from that for a plane mixing layer or jet merely by a factor 1/

√
r̃; this factor entirely

takes account of the effect of cylindric geometry to the required order. Note that
the solutions for the Mach waves radiated by axisymmetric and helical modes are
formally the same. The difference, however, lies somewhat indirectly in the amplitude
function A, which is governed by quite different evolution equations, as will be shown
in the next subsection.

5.3. Amplitude equation

To derive the amplitude equation, one first has to calculate the jumps (a+ − a−) and
(c+ − c−) by considering critical-layer dynamics. It is then necessary to consider the
axisymmetric and helical modes separately, because nonlinearity operates differently.

5.3.1. Axisymmetric supersonic mode

For an axisymmetric supersonic mode (m =0), the dominant nonlinear effect is
associated with the singularity of simple-pole form in the temperature fluctuation as
well as the logarithmic singularity in the velocity fluctuation. This is similar to the
planar case, and so the same scaling applies: the mode evolves nonlinearly when
(cf. (2.2))

ε = R−11/12. (5.26)

The critical-layer expansion remains the same as (3.11), and the relevant analysis is
by and large similar to that of the planar case. Specifically the solutions for Θ1 and
U1 are given by (3.13) and (3.14) respectively except that (T̄ ′

c/T̄ c − Ū ′′
c/Ū

′
c) in the

latter is replaced by (T̄ ′
c/T̄ c − Ū ′′

c/Ū
′
c + 1/rc). The remaining nonlinear interactions

are virtually identical. We therefore omit the details, and present only the final results:

a+ − a− = −k̂πi, (5.27)

c+ − c− = − ᾱ2

3T̄ c

[
i

α

(
∂A

∂t̄
+ c

∂A

∂x̄

)
− Ū 1cx̄A

]
jπi − ᾱ2Ū ′

c

3T̄ c

x̄Aj1πi − ᾱ2

3
k̂dπi − Λ

3
A|A|2,

(5.28)
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where Λ is a slightly modified version of the planar case (cf. (3.25)):

Λ =
πα4Ū ′2

c

3T̄ 2
cµc

{
T̄ ′

c(T̄ cµ
′
c − κc)

T̄ c(µc − κc)

((
µc

κc

)4/3

−1

)
+ k̂+

T̄ ′
c

T̄ c

(
1 +

µc

κc

)2/3(
2µc

κc

)1/3}
(2s)−1/3�

(
1
3

)
.

(5.29)

In the present axisymmetric case, ᾱ = α and k̂ = (T̄ ′
c/T̄ c − Ū ′′

c/Ū
′
c + 1/rc). Inserting

(5.27)–(5.28) into the solvability condition (5.11), we obtain the same form of
amplitude equation as in the planar case:

∂A

∂x̄
+ c−1

g

∂A

∂t̄
= σ x̄A + lA|A|2, (5.30)

but the expressions for the coefficients are modified, namely

cg = cG

/{
2I3 − ᾱ2rc

T̄ cŪ ′
c

[
j − 2

(
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

+
1

rc

)
k̂

]
πi

}
, (5.31)

σ = (−iα/c)

{
I1 − ᾱ2rc

T̄ c

[
Ū 1c

Ū ′
c

(
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c
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− Ū ′′
c

Ū ′
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+
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]
πi

} /
G, (5.32)

l = −iα rcΛ/(cŪ ′
cG), (5.33)

where

G = 2I2 − ᾱ2rc

T̄ cŪ ′
c

[
j − 2

(
T̄ ′

c

T̄ c

− Ū ′′
c

Ū ′
c

+
1

rc

)
k̂

]
πi.

5.3.2. Pairs of helical modes

As was pointed out by Wu et al. (1993), the leading-order nonlinear interaction
between a pair of helical modes in a circular jet is similar to an oblique pair in a planar
shear flow, the reason being that the critical layer is very thin so that the azimuthal
curvature becomes negligible. The dominant nonlinear effect is now associated with
the singularity of a simple-pole form in the outer solution for the streamwise and
spanwise velocities (see (5.8)), while that associated with compressibility and the
logarithmic singularity becomes secondary. If the amplitude of the instability mode
ε ∼ R−1 (or larger), the critical-layer dynamics would be non-equilibrium and evolve
over the length scale of O(R1/3) (or shorter). Again the Mach wave radiation of such
rapidly evolving modes is left for future study; see also § 7.

For the present regime of interest over an O(R1/3) length scale, the helical modes
evolve nonlinearly on the scale x̄ = O(1) at the threshold order of magnitude

ε = R−7/6, (5.34)

which is much smaller than that for an axisymmetric modes (cf. (5.26)). The typical
numerical size of the amplitude corresponding to (5.34) will be estimateed in § 6.

For the present interacting helical modes, the jumps are as given by (5.27)–(5.28),
but the nonlinear term in (5.28) is now replaced by

−Λ

3
A

∫ ∞

0

|A(x̄ − ξ, t̄ − ξ/c)|2 dξ

with

Λ =
π

c
α−5/3Ū ′

c|Ū ′
c|1/3(T̄ cµc)

−4/3
(

2
3

)2/3
�

(
1
3

)(
α2 − m2

r2
c

)
m4

r4
c

. (5.35)

This nonlinear term is the highly viscous limit of the nonlinear term given in Wu et al.
(1993) and Lee & Leib (1995); in making this identification m/rc plays the role of a
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spanwise wavenumber. Use of these jumps in the solvability condition (5.11) yields
the amplitude equation

∂A

∂x̄
+ c−1

g

∂A

∂t̄
= σ x̄A + lA

∫ ∞

0

|A(x̄ − ξ, t̄ − ξ/c)|2 dξ, (5.36)

where the coefficients c−1
g , σ and l are given by (5.31), (5.32) and (5.33) respectively.

Equation (5.36) must be solved numerically. For a modulated wavepacket, for the
convenience of calculating the radiated Mach wave, (5.36) is solved in the spectral
space, and so it is Fourier transformed to

Â′(x̄, ω̃) =
(
σ x̄ − ic−1

g ω̃
)
Â +

l

(2π)2

∫ ∞

−∞

∫ ∞

−∞
Â(x̄, ω̃ − ω̃1)D̂(x̄, ω̃1, ω̃2) dω̃2 dω̃1, (5.37)

with

D̂(x̄, ω̃1, ω̃2) =

∫ ∞

0

Â(x̄ − ξ, ω̃2)Â
∗(x̄ − ξ, ω̃2 − ω̃1) e−(iω̃1/c)ξ dξ. (5.38)

Equation (5.37) is to be solved subject to the initial condition

Â(x̄, ω̃) → as(ω̃) exp
(

1
2
σ x̄2 − ic−1

g ω̃x̄
)

as x̄ → −∞. (5.39)

6. Parametric study and comparisons with DNS and experiments
6.1. The base flow

In the numerical computation, the mean velocity profile is taken to be (Tam & Burton
1984a, b)

Ū =


1, r � h

exp

{
−

(
r − h

b

)2}
. r > h.

(6.1)

For simplicity the Prandtl number is assumed to be unity so that the temperature
profile is given by Crocco’s relation

T̄ =

(
1 +

γ − 1

2
M2

)
[Ta + (1 − Ta)Ū ] − γ − 1

2
M2Ū 2, (6.2)

where h and b characterize the centre and width of the shear layer respectively, and
both of them are functions of x3. The conservation of momentum means that∫ ∞

0

R̄Ū 2r dr = 1/2,

which, on substituting in Ū and R̄ = 1/T̄ , imposes the relation

h2 + 2J0bh + (2J1b
2 − 1) = 0 (6.3)

between h and b, where

Jk =

∫ ∞

0

ζ k e−2ζ 2

[(
1 +

γ −1

2
M2

)(
Ta + (1−Ta) e−ζ 2 )

− γ−1

2
M2 e−2ζ 2

]−1

dζ (k = 0, 1).

For a properly chosen h or b, formula (6.1) is able to describe the development of the
streamwise velocity profile from the nozzle exit to the fully developed region (Tam &
Burton 1984a, b). A global function relation, however, is not needed for the present
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study, since the focus is on the O(R−1/2) vicinity of the neutral position x3,n. Close to
x3,n, it suffices to express b(x3) as a Taylor series:

b(x3) = bn + σs(x3 − x3,n) + O((x3 − x3,n)
2) ≈ bn + σsR

−1/2x̄,

where σs is the familiar spreading rate of the jet. It follows from differentiating (6.3)
and (6.1) that

dh

dx3

= − 1

h + J0bn

(2J1b + J0h)σs,

Ū 1 =


0, r � h

2σs

[
(r − h)2

b3
n

− r − h

b2
n(h + J0b)

(2J1bn + J0h)

]
exp

{
−

(
r − h

bn

)2}
, r > h.

The value of bn determines the frequency of the local neutral instability mode, and
vice versa (that is, a linearly neutral mode of a given frequency can be found only
for a particular bn).

6.2. Characteristics of the eigenmodes and Mach wave front

The compressible Rayleigh equation (5.3) is solved by employing a shooting method
based on a fourth-order Runge–Kutta integrator. For an initial guess for the
wavenumber α and phase speed c, (5.4) and (5.5) are used to integrate (5.3) from
r = r0(=0.01) and r = r∞(≈20) respectively to the positions just beneath and above
the critical level, (rc − d) and (rc + d) say, where d is taken to be small, typically
d = 0.025 and 0.05. The values of p̂0 at these two locations are equated to those given
by the asymptotic solution (5.6), from which we can extract a±. The normalization,
p̂0(rc) = Ū ′

c/T̄ c as implied by (5.6), also fixes the constants C0 and C∞. The jump
condition (5.27) is then used to update α and c until a preset tolerance is met.

Once the eigenvalue and eigenfunction are obtained, the coefficients in the amplitude
equations can be evaluated. The Hadamard finite parts of the integrals involved are
treated as follows. By using the relevant asymptotic solutions at rc and ∞, the singular
parts of the integrands are subtracted out so that the resulting integrands are regular.
These are then evaluated numerically using Simpson’s rule, whilst the singular parts
are dealt with analytically.

The parameters are chosen guided primarily by the experiments of Troutt &
McLaughlin (1982). In all the calculations, we take Ta = 1, and M = 2.1 unless
otherwise stated. For the convenience of comparing with experiments, we introduce
the Strouhal number St = 2RJ f ∗/UJ , which is related to the frequency ω = αc by
St =ω/π, where f ∗ is the physical frequency in units of Hertz.

Figures 2(a) and 2(b) show the eigenfunctions of the axisymmetric and helical
supersonic modes respectively. Evidently these modes are radiative in character. It
is interesting to note that the eigenfunctions quickly approach the asymptote (5.5)
within a radial distance of just one to two diameters of the jet nozzle. The unsteady
fluctuation in the majority of the flow field is therefore acoustic in nature.

Figures 3(a) and 3(b) show the wavenumbers and phase speeds of neutral modes for
a range of frequencies. Also shown are the experimental data of Troutt & McLaughlin
(1982). These agree remarkably well with the theoretical results for helical modes,
but appear to differ from those for the axisymmetric modes. In particular, the phase
speed of the axisymmetric modes behaves quite differently: it decreases with St

rather than increases as for helical modes. This suggests that the helical modes are
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Figure 2. Eigenfunctions of supersonic instability modes in a M = 2.1 jet: (a) symmetric mode
with St = 0.4, and (b) helical modes (m= ±1) with St = 0.4. The far-field asymptote (5.5) is
represented by · · · � · · ·.

the predominated disturbances in the experiments. It should be mentioned that as
an instability mode of a given St evolves downstream, its wavelength and phase
speed change, and so strictly speaking the measured data may depend on streamwise
locations. But measurements were usually carried out within a few diameters from the
jet nozzle, within which the wavelength and speed do not vary significantly so that
the comparison is meaningful. Troutt & McLaughlin (1982) found that the measured
wavenumbers agreed well with the calculations using a vortex sheet model (Tam 1972).
Further comparisons of this kind were presented by Tam & Hu (1989). Presumably,
the wavenumbers are not particularly sensitive to the choice of the base-flow profiles.
A notable feature of the phase speed is that it remains almost constant for all modes
with St > 0.3.

The eigenvalue of the Rayleigh equation yields information on Mach wave phase
fronts, which correspond to x + qr − ct =constant. Thus at any instant, the Mach
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Figure 3. (a) Wavenumber α, and (b) phase speed c of neutral modes vs. frequency St .
Theory results: ——, helical modes; · · · · · ·, axisymmetric modes. Experimental data (Troutt &
McLaughlin 1982): �.

wave fronts are parallel lines that make angle

ψ = sin−1 1

1 + q2
= sin−1 1

Mac

with the upstream axial direction. This result is consistent with the wavy-wall analogy
for Mach wave emission. The prediction for ψ is displayed in figure 4 for both
helical and axisymmetric modes at M =2.1. The observed ψ ≈ 56◦ for St = 0.4 in
the experiments of Troutt & McLaughlin (1982) agrees with the theory, confirming
that the acoustic field is primarily in the form of a Mach wave. Curiously, for
St =0.2, Troutt & McLaughlin found ψ = 48◦, which is considerably smaller than the
theoretically expected value; the reason for this rather puzzling discrepancy remains
unknown. The earlier experiments of McLaughlin et al. (1975), which were conducted
at a somewhat lower Reynolds number, reported that ψ ≈ 60◦ for St = 0.18 and
M = 2.2. This value is in excellent agreement with the prediction.

Figure 4 reveals an important feature: for all modes (St > 0.3), the angle ψ remains
almost constant. This is a result of the phase speed c having a weak dependence
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Figure 4. Mach angle ψ vs. frequency St . Theory results: ——, helical modes; · · · · · ·, axisym-
metric modes. Experimental data (Troutt & McLaughlin 1982; McLaughlin et al. 1975): �.

on St as shown in figure 3(b). Therefore, ψ is practically determined by just one
parameter Ma , the jet Mach number based on the sound speed in the ambient fluid.
Since these relatively high-frequency modes tend to be predominately present in the
region close to the nozzle, and attenuate before the jet becomes fully developed, the
upstream region of a jet would exhibit a characteristic Mach wave field which is highly
organized even if it is generated by broadband instability waves. This conclusion is
in agreement with observations (e.g. Lowson & Ollerhead 1968; Oertel 1979). The
calculation of Tam & Hu (1989) indicates that the characteristic Mach wave angle
can be predicted by a vortex sheet model for a wide range of Mach numbers.

6.3. Directivity of Mach wave field

The directivity of the Mach wave field is characterized by the solutions for the Mach
wave envelope, as given by (5.16) in the near field and by (5.22) or (5.25) in the far
field of the beam. These formulae are expressed in terms of x̄, r̄ and r̃ . To order to
facilitate direct comparison with experiments, they will be reverted back to x and r

via (2.1), (5.12) and (5.19), the first of which can be more conveniently rewritten as

x̄ = R−1/2(x − xn), (6.4)

where xn = x∗
n/RJ , the neutral position x∗

n normalized by RJ .
First, we check (5.16) for the case of a simple axisymmetric instability mode against

the DNS result of Mitchell et al. (1997). From the given parameters, it can be inferred
that α = 1.51, c = 0.75, M = 4.47 and q =1.12. The instability wave in the simulation
has a very small amplitude so that as it evolves through the neutral position its
envelope is Gaussian, A= a0 exp{σ x̄2/2} = a0 exp{R−1σ (x − xn)

2/2}. Lacking detailed
information about the mean flow, we are unable to calculate σ and xn. Instead, we
simply extrapolate σ and xn by fitting A ∼ exp{R−1σ (x − xn)

2/2} to the shape of
the curve in their figure 3(a). By this practice, we isolate possible uncertainty or
error in predicting the amplitude evolution from that associated with the formula
(5.16) itself. Using this Gaussian envelope in (5.16) then yields the solution for the
Mach wave envelope. The contours of |p̄0| predicted by (5.16) are shown in figure 5,
and they are to be compared with figure 4(a) in Mitchell et al. (1997). A close
resemblance is evident. In the present case, the near-field solution is apparently
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Figure 5. Contours of the pressure |p̄0| as predicted by (5.16) using σ and xn extracted by
fitting a Gaussian envelope to the amplitude in figure 4(a) of Mitchell et al. (1997).

0 10 20 30 40 50 60 70
–5

–4

–3

–2

–1

φ

|xp0|

Figure 6. Directivity of the Mach wave field: x|p̄0| vs. φ = tan−1(r/x) at different streamwise
locations. Theoretical results are presented by solid lines, and the DNS results of Mitchell
et al. (1997) by symbols: �, x = 40; �, x = 70; �, x = 90.

valid in the region extending to r = 80. A close quantitative comparison is presented
in figure 6, where |xp̄0| is plotted (on a logarithmic scale) against φ = tan−1(r/x)
at three different downstream locations. Here the initial amplitude a0 is a free
parameter, and is chosen such that |xp̄0| equals the DNS value at φ = 38◦, x = 90.
The agreement is reasonably good. In particular, the acoustic intensity within the
Mach wave beam is predicted well. The accuracy of (5.16) appears to deteriorate
at large φ, which is not surprising because the near-field solution breaks down far
away from the beam. It is emphasized that in this comparison only one value of a0 is
used.

We now present results for the profile (6.1), which models quite well the base flow
in the experiments of Troutt & McLaughlin (1982). Attention will be focused on the
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Figure 7. Amplitude of mass-velocity fluctuation m̃ vs. x for St = 0.2 and M = 2.1. Present
theory: ——. Experiment (Troutt & McLaughlin 1982): �.

modes with St =0.2 and 0.4, which were the modes excited in a controlled manner.
For a given St , by solving Rayleigh equation, we determine bn for which this mode
is neutral. Our bn then is converted to the δ in Troutt & McLaughlin (1982) using
the relation δ/RJ =

√
2.773bn. Using the experimental data in their figure 19, we can

find the corresponding neutral location xn and σs , which are used in (6.4) to allow a
direct comparison between the theory and experiments.

The first calculation was performed for a helical mode with St = 0.2. Eigenvalue
calculation shows that this mode is neutral for bn = 1.05, which corresponds to xn ≈ 12
and σs ≈ 0.162R. It then follows that A= a0 exp{R−1σ (x − 12)2/2}, assuming a0 to be
sufficiently small. Note that σ is calculated from the theory rather than being extracted
from the experimental data. The initial amplitude a0 has to be chosen however. To that
end, we consider the root-mean-square of the mass-velocity fluctuation, m̃ ≡ (ρu)rms .
By using the solutions for the velocity and density in the critical layer, it is found that

m̃ =
√

2
αŪc

T̄ c

(
T̄ ′

c

T̄ c

− m2

α2r2
c

Ū ′
c

Ū c

)
R−5/6|A|

∣∣∣∣∫ ∞

0

exp
(
−sξ 3 − iαŪ ′

cR
−1/3(r − rc)ξ

)
dξ

∣∣∣∣ .
(6.5)

In their experiments, Troutt & McLaughlin (1982) measured m̃ along the nozzle lip
line, which at x = 12 happens to correspond to the R for which m̃ attains its maximum.
We choose a0 so that the calculated m̃ matches the measured value at x =12. The
prediction by (6.5) is plotted in figure 7 along with the experimental data. The overall
agreement between the two is fair, indicating that the Gaussian envelope is able to
capture the non-parallel effect that underlies the amplification and decaying process.

The Mach wave in the near field, as predicted by (5.16), is shown in figure 8(a).
These pressure contours broadly capture the highly directional feature of Mach wave
emission. However, the narrow, wedge-shaped contours are somewhat different from
the lobed ones observed in experiments. In figure 8(b), the contours corresponding
to the far-field solution (5.22) are plotted. Now the contours appear to be lobed.
Several of these contours are also shown as dotted lines in figure 8(a) in order to see
the relevance of the near- and far-field solutions. The comparison indicates that the
near-field solution is applicable only in a region within just two diameters from the
jet centre, where these two solutions overlap as expected. There arises the question as
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Figure 8. Pressure contours (St = 0.2): (a) as predicted by (5.16) (——) and (5.22) (· · · · · ·),
and (b) in the far field.

to why the near-field solution has such a limited validity in the present case whilst a
much extended validity was observed in the case shown in figure 5. This question can
be answered by examining (5.22) for a linearly evolving instability wave, for which
A(x̄) = exp{σ x̄2/2}. Then (5.22) simplifies to

p̃0 =
1√
r̃

[
1 −

(
iM2

a c
2σ

αq3R

)
r

]−1/2

exp

{
1
2
σξ 2

/ [
1 −

(
iM2

a c
2σ

αq3R

)
r

]}
, (6.6)

which reduces to the near-field solution

p̄0 =
1√
r̄

exp
{

1
2
σ ξ̄ 2

}
in the limit M2

a c
2σ/(αq3R)r � 1. Obviously, the size of the validity region of the

near-field solution is determined by the parameter M2
a c

2σ/(αq3R): the larger this
parameter is, the smaller the validity region of the near-field solution becomes. In the
present case, M2

a c
2σ/(αq3R) = 0.518 while in figure 5 it has a much smaller value of

0.013.
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Figure 9. |A/a0| vs. x illustrating the nonlinear development of the axisymmetric mode with
St = 0.4 with initial amplitudes a0 = 6, 7.5. —�—, linear approximation.

The result (6.6) indicates that as r increases, the characteristic width of the Mach
wave beam increases by the factor∣∣∣∣1 −

(
iM2

a c
2σ

αq3R

)
r

∣∣∣∣1/2

> 1,

and on the other hand the overall intensity is reduced by the same factor. These two
effects are clearly reflected in figure 8(b). While the contours shown in figure 8(b)
are broadly similar to those in figure 29(a) of Troutt & McLaughlin (1982), there
is an appreciable difference in detail: the beam predicted by the theory makes a
smaller angle to the downstream axial direction than that observed in experiments.
The absolute sound level is underestimated. Such discrepancies are not unexpected,
because the sound level measured in the experiment, though band-passed, is still
broadband in nature, consisting of contributions of all disturbances in the frequency
range St = 0.15–0.23. Indeed the directivity and intensity of the overall sound pressure,
shown in figure 27 of Troutt & McLaughlin (1982), differ quite appreciably from
those of the band-passed pressure, indicating that spectral contents do make a
difference. Tam & Burton (1984a, b) found that the observed contour pattern could
be reproduced in their theory after an axisymmetric mode of suitable amplitude
was included. However, without the information about the relative phase relation
between the axisymmetric and helical modes, a completely convincing comparison is
impossible.

We now consider the Mach waves radiated by instability waves which are under-
going nonlinear evolution. The first case is for an axisymmetric mode with St = 0.4,
for which the Landau coefficient l in the amplitude equation (5.30) has a positive
real part, i.e. nonlinearity has a destabilizing effect. Figure 9 displays several solutions
for different initial amplitude a0. Nonlinearity starts to have appreciable effect for
a0 > 5. By using the critical-layer solution for the density perturbation, it may be
estimated that this corresponds to 3% peak density fluctuation, or 2.5% peak mass-
flux fluctuation (as approximated by (6.5)). The fluctuations in the experiments of
Troutt & McLaughlin (1982) are somewhat above this level, and so it seemed possible
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Figure 10. Pressure contours of Mach waves radiated by the axisymmetric mode with St = 0.4,
predicted by (5.22) using the nonlinear solution (——) and linear approximation (· · · · · ·)
for A.
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Figure 11. |A/a0| vs. x illustrating the nonlinear development of a pair of helical modes
with St = 0.4 with initial amplitudes a0 = 130, 260. —�—, linear approximation.

that the nonlinear effect might not entirely negligible. With nonlinearity included, the
apparent neutral (i.e. peak) position shifts downstream. The linear approximation
would underestimate the peak amplitude. The linear and nonlinear solutions for the
amplitude A are used in (5.22) to calculate the Mach waves in the far field. The
pressure contours are illustrated in figure 10. As might be expected on the basis of the
result shown in figure 9, the Mach waves are stronger than if nonlinearity is ignored,
and the beam appears slightly broader.

The second case is for a pair of helical modes with St =0.4, whose evolution is
governed by (5.36) with ∂/∂t̄ = 0. The equation is solved using a sixth-order predictor–
correct scheme, and the solutions corresponding to different initial amplitude a0 are
shown in figure 11. The Landau coefficient is now found to have a negative real
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Figure 12. Pressure contours of the Mach waves radiated by a pair of helical modes with
St =0.4, predicted by (5.22) using the nonlinear solution (——) and linear approximation
(· · · · · ·) for A.

part so that nonlinearity is stabilizing. The apparent neutral (peak) position of the
amplitude shifts upstream. Ignoring nonlinearity would result in an overestimate of
the peak amplitude. Nonlinearity become appreciable when a0 ∼ 100. This is found
to correspond to 2.3% peak density fluctuation, or 3% peak mass-flux fluctuation,
comparable with the fluctuations in the experiments of Troutt & McLaughlin (1982).
It seems that the nonlinear effect might be present. However, the disturbances in the
experiments had a narrow finite bandwidth, for which the nonlinear effect comes into
play at a higher threshold (see the result in figure 14 below). Therefore it is highly
likely that the helical modes in the experiments evolved linearly.

The Mach wave fields, calculated by using the linear and nonlinear solutions for
A, are shown in figure 12. The two sets of contours have broadly similar geometric
character. But inclusion of the nonlinear effect leads to a weaker Mach wave field,
and a slightly more focused beam. The contour pattern corresponding to the linear
solution A is representative of small-a0 cases, and it bears a close resemblance to
figure 29(b) of Troutt & McLaughlin (1982). Specifically, the angle between the beam
and the downstream direction agrees with the observed value of 34◦.

Finally, we consider the Mach waves radiated by modulated wavetrains (or
wavepackets). The evolution of the latter is described, in the spectral space, by
(5.37) subject to (5.39). The system is solved using a sixth-order predictor–corrector
scheme. The integrals are evaluated using Simpson’s rule. To avoid evaluating a triple
integral at each step, we note that D, defined by (5.38), obeys the recurrence relation

D̂(x̄, ω̃1, ω̃2) = D̂(x̄ − 2δx̄, ω̃1, ω̃2) e−2(iω̃1/c)δx̄

+
δx̄

3

2∑
n=0

qnÂ(x̄ − nδx̄, ω̃2)Â
∗(x̄ − nδx̄, ω̃2 − ω̃1) e−n(iω̃1/c)δx̄ ,

where δx̄ is the step size, q0 = q2 = 1 and q1 = 4 are parameters in Simpson’s
rule. The initial spectrum as(ω̃) is taken to be given by (3.32), which mimics the
measured spectra in figure 16 of Troutt & McLaughlin’s (1982). Figure 13 shows
how the spectrum evolves nonlinearly. It more or less retains its initial symmetric
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Figure 13. Nonlinear development of the spectrum of a wavetrain with frequencies centred
at St =0.4. Parameters: ∆−1 = 0.16, a0 = 1300.

shape in the linear stage. At the late stage (x =16), the components in the lower-
frequency sideband overtake those in the higher-frequency sideband, consistent with
the experimental observation. The stabilizing effect of nonlinearity is reflected in
the spectral development. The time-averaged acoustic power is shown in figure 14
for different a0, which measures the initial overall amplitude of the wavetrain.
Interestingly, a wavetrain is much less sensitive to nonlinearity than a single wave in
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Figure 15. Pressure contours of the Mach waves radiated by a wavetrain (St = 0.4, a0 = 1300),
predicted by (5.25), using the nonlinear solution (——) and linear approximation (· · · · · ·)
for A.

the sense that the threshold magnitude for the nonlinear effect to become appreciable
is larger. As is shown in figure 14, the wavetrain (with ∆−1 = 0.16) evolves almost
linearly for a0 = 260, but for a single wave (which corresponds to ∆−1 = 0), the
nonlinear effect is already significant when a0 = 130. Using the nonlinear solution for

Â(x̄, ω̃) in (5.25), we obtain the Mach wave field shown in figure 15. For comparison,
the Mach wave field predicted by using a linear approximation for A is also included.
Comparing with the respective counterparts for a simple wave shown in figure 12,
one notes that the Mach wave beam radiated by a wavetrain is broader. Nonlinearity
has a similar effect as for a single wave (cf. figure 12): it reduces the emission and but
renders the beam more focused. For the symmetric mode with St = 0.4 or the helical
modes with St = 0.2, the effect of nonlinearity would be opposite because the Landau
coefficients have positive real parts.
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7. Summary and conclusion
In this paper, a self-consistent mathematical description is presented for the Mach

wave radiation by nonlinearly evolving supersonic instability wavetrains, which is one
of the fundamental noise-generation mechanisms in a supersonic jet. Using matched
asymptotic expansion and multiple-scale techniques, we derive appropriate amplitude
equations for the distinguished regime in which nonlinearity and non-parallelism are
both important.

It is shown that the energy of the radiated Mach waves concentrates in a highly
directional beam, which is a distinctive feature of supersonic jet noise. The intrinsic
orientation of the beam is found to be a function of the phase speed of the instability
mode and the jet Mach number based on the ambient sound speed. In the case of a
planar or circular jet, the beam is perpendicular to the Mach wave fronts. The Mach
wave beam consists of two asymptotic regions: a near field and a far field. In each
of these the solution for the acoustic pressure was expressed explicitly in terms of
the amplitude function of the instability wavetrain, thereby offering useful analytical
insights into the radiation process. It must be pointed out that the analysis and the
solutions for the Mach waves, as presented in § 4 and § 5.2, are in fact valid for an
instability wavetrain modulated on arbitrary time and legnth scales (provided that
they are longer than the period and wavelength of the carrier wave respectively).

Comparisons with DNS and relevant experimental data show that the present
theory can successfully reproduce the most salient qualitative features of the Mach
wave field. A good degree of quantitative agreement was noted as well.

As was indicated in the Introduction, the nonlinear evolution of the instability
wavetrains may take different routes and therefore requires different nonlinear theories
depending on the size of their initial amplitude. The amplitude equations in the present
theory apply only to quite weak disturbances, which evolve on the O(R1/2) length
scale. In flows of typical technological interest, disturbances of larger amplitude are
likely to arise, and it is important to consider the radiation properties of stronger
wavetrains. Their nonlinear evolution occurs over much shorter length scale than that
considered here, and may be described by non-equilibrium critical-layer dynamics.
Specifically, for helical modes if their amplitude rises to O(R−1), the non-equilibrium
effect becomes important (whereas non-parallelism becomes secondary). When εR

is below a critical value, the modes go through nonlinear amplification followed by
exponential decay (Wu et al. 1993). In this case, the radiated Mach wave remains
being described by the solution given in § 5.2 on the understanding that x̄ =R−1/3,
r̄ = R−1/3r , r̃ = R−2/3r , and A satisfies the amplitude equation in Wu et al. (1993).
However, once εR exceeds the critical value, the amplitude develops a singularity
at a finite distance downstream. Predicting the continued nonlinear evolution of the
instability modes and the Mach wave radiation then becomes a major challenge
because the removal of the singularity requires consideration of the fully nonlinear
Euler equations (Goldstein & Choi 1989).

It may be note that the threshold amplitide of O(R−1) for the non-equlibrium regime
is higher than that for the equilibrium regime by a factor O(R−1/6), which would be
10 for typical R ≈ 106 that may be encountered in technological applications. This
disparity suggests that there exists a sizable range of disturbance amplitude to which
the present theory applies. From the practical point of view, it may be worthwhile to
construct a composite solution or evolution equation, which includes both the non-
equilibrium and non-parallel effects. This would not only help quantify the relative
role of these two factors, but also would lead to a more precise identification of the
critical amplitude above which the finite-distance singularity develops.
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